Blog
/

Threat Finds

Ransomware

/
February 20, 2020

Insights From a Sodinokibi Ransomware Attack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Feb 2020
The power of Darktrace’s self-learning AI comes into play when threat-actors use off-the-shelf tooling, making detection more difficult.

Introduction

Last week, Darktrace detected a targeted Sodinokibi ransomware attack during a 4-week trial with a mid-sized company.

This blog post will go through every stage of the attack lifecycle and detail the attacker’s techniques, tools and procedures used, and how Darktrace detected the attack.

The Sodinokibi group is an innovative threat-actor that is sometimes referred to as a ‘double-threat’, due to their ability to run targeted attacks using ransomware while simultaneously exfiltrating their victim’s data. This enables them to threaten to make the victim’s data publicly available if the ransom is not paid.

While Darktrace’s AI was able to identify the attack in real time as it was emerging, unfortunately the security team didn’t have eyes on the technology and was unable to action the alerts — nor was Antigena set in active mode, which would have slowed down and contained the threat instantaneously.

Timeline

The timeline below provides a rough overview of the major attack phases. Most of the attack took place over the course of a week, with the majority of activity distributed over the last three days.

Technical analysis

Darktrace detected two main devices being hit by the attack: an internet-facing RDP server (‘RDP server’) and a Domain Controller (‘DC’), that also acts as a SMB file server.

In previous attacks, Sodinokibi has used host-level encryption for ransomware activity where the encryption takes place on the compromised host itself — in contrast to network-level encryption where the bulk of the ransomware activity takes place over network protocols such as SMB.

Initial compromise

Over several days, the victim’s external-facing RDP server was receiving successful RDP connections from a rare external IP address located in Ukraine.

Shortly before the initial reconnaissance started, Darktrace saw another RDP connection coming into the RDP server with the same RDP account as seen before. This connection lasted for almost an hour.

It is highly likely that the RDP credential used in this attack had been compromised prior to the attack, either via common brute-force methods, credential stuffing attacks, or phishing.

Thanks to Darktrace’s Deep-Packet Inspection, we can clearly see the connection and all related information.

Suspicious RDP connection information:

Time: 2020-02-10 16:57:06 UTC
Source: 46.150.70[.]86 (Ukraine)
Destination: 192.168.X.X
Destination Port: 64347
Protocol: RDP
Cookie: [REDACTED]
Duration: 00h41m40s
Data out: 8.44 MB
Data in: 1.86 MB

Darktrace detects incoming RDP connections from IP addresses that usually do not connect to the organization.

Attack tools download

Approximately 45 minutes after the suspicious RDP connection from Ukraine, the RDP server connected to the popular file sharing platform, Megaupload, and downloaded close to 300MB from there.

Darktrace’s AI recognized that neither this server, nor its automatically detected peer group, nor, in fact, anyone else on the network commonly utilized Megaupload — and therefore instantly detected this as anomalous behavior, and flagged it as unusual.

As well as the full hostname and actual IP used for the download, Megaupload is 100% rare for this organization.

Later on, we will see over 40GB being uploaded to Megaupload. This initial download of 300MB however is likely additional tooling and C2 implants downloaded by the threat-actor into the victim’s environment.

Internal reconnaissance

Only 3 minutes after the download from Megaupload onto the RDP server, Darktrace alerted on the RDP server doing an anomalous network scan:

The RDP server scanned 9 other internal devices on the same subnet on 7 unique ports: 21, 80, 139, 445, 3389, 4899, 8080
 . Anybody with some offensive security know-how will recognize most of these ports as default ports one would scan for in a Windows environment for lateral movement. Since this RDP server does not usually conduct network scans, Darktrace again identified this activity as highly anomalous.

Later on, we see the threat-actor do more network scanning. They become bolder and use more generic scans — one of them showing that they are using Nmap with a default user agent:

Additional Command and Control traffic

While the initial Command and Control traffic was most likely using predominantly RDP, the threat-actor now wanted to establish more persistence and create more resilient channels for C2.

Shortly after concluding the initial network scans (ca. 19:17 on 10th February 2020), the RDP server starts communicating with unusual external services that are unique and unusual for the victim’s environment.

Communications to Reddcoin

Again, nobody else is using Reddcoin on the network. The combination of application protocol and external port is extremely unusual for the network as well.

The communications also went to the Reddcoin API, indicating the installation of a software agent rather than manual communications. This was detected as Reddcoin was not only rare for the network, but also ‘young’ — i.e. this particular external destination had never been seen to be contacted before on the network until 25 minutes before.

Communications to the Reddcoin API

Communications to Exceptionless[.]io

As we can see, the communications to exceptionalness[.]io were done in a beaconing manner, using a Let’s Encrypt certificate, being rare for the network and using an unusual JA3 client hash. All of this indicates the presence of new software on the device, shortly after the threat-actor downloaded their 300MB of tooling.

While most of the above network activity started directly after the threat-actor dropped their tooling on the RDP server, the exact purpose of interfacing with Reddcoin and Exceptionless is unclear. The attacker seems to favor off-the-shelf tooling (Megaupload, Nmap, …) so they might use these services for C2 or telemetry-gathering purposes.

This concluded most of the activity on February 10.

More Command and Control traffic

Why would an attacker do this? Surely using all this C2 at the same time is much noisier than just using 1 or 2 channels?

Another significant burst of activity was observed on February 12 and 13.

The RDP server started making a lot of highly anomalous and rare connections to external destinations. It is inconclusive if all of the below services, IPs, and domains were used for C2 purposes only, but they are linked with high-confidence to the attacker’s activities:

  • HTTP beaconing to vkmuz[.]net
  • Significant amount of Tor usage
  • RDP connections to 198-0-244-153-static.hfc.comcastbusiness[.]net over non-standard RDP port 29348
  • RDP connections to 92.119.160[.]60 using an administrative account (geo-located in Russia)
  • Continued connections to Megaupload
  • Continued SSL beaconing to Exceptionless[.]io
  • Continued connections to api.reddcoin[.]com
  • SSL beaconing to freevpn[.]zone
  • HTTP beaconing to 31.41.116[.]201 to /index.php using a new User Agent
  • Unusual SSL connections to aj1713[.]online
  • Connections to Pastebin
  • SSL beaconing to www.itjx3no[.]com using an unusual JA3 client hash
  • SSL beaconing to safe-proxy[.]com
  • SSL connection to westchange[.]top without prior DNS hostname lookups (likely machine-driven)

What is significant here is the diversity in (potential) C2 channels: Tor, RDP going to dynamic ISP addresses, VPN solutions and possibly custom / customized off-the-shelf implants (the DGA-looking domains and HTTP to IP addresses to /index.php).

Why would an attacker do this? Surely using all this C2 at the same time is much noisier than just using 1 or 2 channels?

One answer might be that the attacker cared much more about short-term resilience than about stealth. As the overall attack in the network took less than 7 days, with a majority of the activity taking place over 2.5 days, this makes sense. Another possibility might be that various individuals were involved in parallel during this attack — maybe one attacker prefers the comfort of RDP sessions for hacking while another is more skilled and uses a particular post-exploitation framework.

The overall modus operandi in this financially-motivated attack is much more smash-and-grab than in the stealthy, espionage-related incidents observed in Advanced Persistent Threat campaigns (APT).

Data exfiltration

The DC uploaded around 40GB of data to Megaupload over the course of 24 hours.

While all of the above activity was seen on the RDP server (acting as the initial beach-head), the following data exfiltration activity was observed on a Domain Controller (DC) on the same subnet as the RDP server.

The DC uploaded around 40GB of data to Megaupload over the course of 24 hours.

Darktrace detected this data exfiltration while it was in progress — never did the DC (or any similar devices) upload similar amounts of data to the internet. Neither did any client nor server in the victim’s environment use Megaupload:

Ransom notes

Finally, Darktrace observed unusual files being accessed on internal SMB shares on February 13. These files appear to be ransom notes — they follow a similar, randomly-generated naming convention as other victims of the Sodinokibi group have reported:

413x0h8l-readme.txt
4omxa93-readme.txt

Conclusion and observations

The threat-actor seems to be using mostly off-the-shelf tooling which makes attribution harder — while also making detection more difficult.

This attack is representative of many of the current ransomware attacks: financially motivated, fast-acting, and targeted.

The threat-actor seems to be using mostly off-the-shelf tooling (RDP, Nmap, Mega, VPN solutions) which makes attribution harder — while also making detection more difficult. Using this kind of tooling often allows to blend in with regular admin activity — only once anomaly detection is used can this kind of activity be detected.

How can you spot the one anomalous outbound RDP connection amongst the thousands of regular RDP connections leaving your environment? How do you know when the use of Megaupload is malicious — compared to your users’ normal use of it? This is where the power of Darktrace’s self-learning AI comes into play.

Darktrace detected every stage of the visible attack lifecycle without using any threat intelligence or any static signatures.

The graphics below show an overview of detections on both compromised devices. The compromised devices were the highest-scoring assets for the network — even a level 1 analyst with limited previous exposure to Darktrace could detect such an in-progress attack in real time.

RDP Server

Some of the detections on the RDP server include:

  • Compliance / File Storage / Mega — using Megaupload in an unusual way
  • Device / Network Scan — detecting unusual network scans
  • Anomalous Connection / Application Protocol on Uncommon Port — detecting the use of protocols on unusual ports
  • Device / New Failed External Connections — detecting unusual failing C2
  • Compromise / Unusual Connections to Let’s Encrypt — detecting potential C2 over SSL using Let’s Encrypt
  • Compromise / Beacon to Young Endpoint — detecting C2 to new external endpoints for the network
  • Device / Attack and Recon Tools — detecting known offensive security tools like Nmap
  • Compromise / Tor Usage — detecting unusual Tor usage
  • Compromise / SSL Beaconing to Rare Destination — detecting generic SSL C2
  • Compromise / HTTP Beaconing to Rare Destination — detecting generic HTTP C2
  • Device / Long Agent Connection to New Endpoint — detecting unusual services on a device
  • Anomalous Connection / Outbound RDP to Unusual Port — detecting unusual RDP C2

DC

Some of the detections on the DC include:

  • Anomalous Activity / Anomalous External Activity from Critical Device — detecting unusual behaviour on dcs
  • Compliance / File storage / Mega — using Megaupload in an unusual way
  • Anomalous Connection / Data Sent to New External Device — data exfiltration to unusual locations
  • Anomalous Connection / Uncommon 1GB Outbound — large amounts of data leaving to unusual destinations
  • Anomalous Server Activity / Outgoing from Server — likely C2 to unusual endpoint on the internet


Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 30, 2025

/
No items found.

Reimagining Your SOC: Overcoming Alert Fatigue with AI-Led Investigations  

Default blog imageDefault blog image

The efficiency of a Security Operations Center (SOC) hinges on its ability to detect, analyze and respond to threats effectively. With advancements in AI and automation, key early SOC team metrics such as Mean Time to Detect (MTTD) have seen significant improvements:

  • 96% of defenders believing AI-powered solutions significantly boost the speed and efficiency of prevention, detection, response, and recovery.
  • Organizations leveraging AI and automation can shorten their breach lifecycle by an average of 108 days compared to those without these technologies.

While tool advances have improved performance and effectiveness in the detection phase, this has not been as beneficial to the next step of the process where initial alerts are investigated further to determine their relevance and how they relate to other activities. This is often measured with the metric Mean Time to Analysis (MTTA), although some SOC teams operate a two-level process with teams for initial triage to filter out more obviously uninteresting alerts and for more detailed analysis of the remainder. SOC teams continue to grapple with alert fatigue, overwhelmed analysts, and inefficient triage processes, preventing them from achieving the operational efficiency necessary for a high-performing SOC.

Addressing this core inefficiency requires extending AI's capabilities beyond detection to streamline and optimize the following investigative workflows that underpin effective analysis.

Challenges with SOC alert investigation

Detecting cyber threats is only the beginning of a much broader challenge of SOC efficiency. The real bottleneck often lies in the investigation process.

Detection tools and techniques have evolved significantly with the use of machine learning methods, improving early threat detection. However, after a detection pops up, human analysts still typically step in to evaluate the alert, gather context, and determine whether it’s a true threat or a false alarm and why. If it is a threat, further investigation must be performed to understand the full scope of what may be a much larger problem. This phase, measured by the mean time to analysis, is critical for swift incident response.

Challenges with manual alert investigation:

  • Too many alerts
  • Alerts lack context
  • Cognitive load sits with analysts
  • Insufficient talent in the industry
  • Fierce competition for experienced analysts

For many organizations, investigation is where the struggle of efficiency intensifies. Analysts face overwhelming volumes of alerts, a lack of consolidated context, and the mental strain of juggling multiple systems. With a worldwide shortage of 4 million experienced level two and three SOC analysts, the cognitive burden placed on teams is immense, often leading to alert fatigue and missed threats.

Even with advanced systems in place not all potential detections are investigated. In many cases, only a quarter of initial alerts are triaged (or analyzed). However, the issue runs deeper. Triaging occurs after detection engineering and alert tuning, which often disable many alerts that could potentially reveal true threats but are not accurate enough to justify the time and effort of the security team. This means some potential threats slip through unnoticed.

Understanding alerts in the SOC: Stopping cyber incidents is hard

Let’s take a look at the cyber-attack lifecycle and the steps involved in detecting and stopping an attack:

First we need a trace of an attack…

The attack will produce some sort of digital trace. Novel attacks, insider threats, and attacker techniques such as living-off-the-land can make attacker activities extremely hard to distinguish.

A detection is created…

Then we have to detect the trace, for example some beaconing to a rare domain. Initial detection alerts being raised underpin the MTTD (mean time to detection). Reducing this initial unseen duration is where we have seen significant improvement with modern threat detection tools.

When it comes to threat detection, the possibilities are vast. Your initial lead could come from anything: an alert about unusual network activity, a potential known malware detection, or an odd email. Once that lead comes in, it’s up to your security team to investigate further and determine if this is this a legitimate threat or a false alarm and what the context is behind the alert.

Investigation begins…

It doesn’t just stop at a detection. Typically, humans also need to look at the alert, investigate, understand, analyze, and conclude whether this is a genuine threat that needs a response. We normally measure this as MTTA (mean time to analyze).

Conducting the investigation effectively requires a high degree of skill and efficiency, as every second counts in mitigating potential damage. Security teams must analyze the available data, correlate it across multiple sources, and piece together the timeline of events to understand the full scope of the incident. This process involves navigating through vast amounts of information, identifying patterns, and discerning relevant details. All while managing the pressure of minimizing downtime and preventing further escalation.

Containment begins…

Once we confirm something as a threat, and the human team determines a response is required and understand the scope, we need to contain the incident. That's normally the MTTC (mean time to containment) and can be further split into immediate and more permanent measures.

For more about how AI-led solutions can help in the containment stage read here: Autonomous Response: Streamlining Cybersecurity and Business Operations

The challenge is not only in 1) detecting threats quickly, but also 2) triaging and investigating them rapidly and with precision, and 3) prioritizing the most critical findings to avoid missed opportunities. Effective investigation demands a combination of advanced tools, robust workflows, and the expertise to interpret and act on the insights they generate. Without these, organizations risk delaying critical containment and response efforts, leaving them vulnerable to greater impacts.

While there are further steps (remediation, and of course complete recovery) here we will focus on investigation.

Developing an AI analyst: How Darktrace replicates human investigation

Darktrace has been working on understanding the investigative process of a skilled analyst since 2017. By conducting internal research between Darktrace expert SOC analysts and machine learning engineers, we developed a formalized understanding of investigative processes. This understanding formed the basis of a multi-layered AI system that systematically investigates data, taking advantage of the speed and breadth afforded by machine systems.

With this research we found that the investigative process often revolves around iterating three key steps: hypothesis creation, data collection, and results evaluation.

All these details are crucial for an analyst to determine the nature of a potential threat. Similarly, they are integral components of our Cyber AI Analyst which is an integral component across our product suite. In doing so, Darktrace has been able to replicate the human-driven approach to investigating alerts using machine learning speed and scale.

Here’s how it works:

  • When an initial or third-party alert is triggered, the Cyber AI Analyst initiates a forensic investigation by building multiple hypotheses and gathering relevant data to confirm or refute the nature of suspicious activity, iterating as necessary, and continuously refining the original hypothesis as new data emerges throughout the investigation.
  • Using a combination of machine learning including supervised and unsupervised methods, NLP and graph theory to assess activity, this investigation engine conducts a deep analysis with incidents raised to the human team only when the behavior is deemed sufficiently concerning.
  • After classification, the incident information is organized and processed to generate the analysis summary, including the most important descriptive details, and priority classification, ensuring that critical alerts are prioritized for further action by the human-analyst team.
  • If the alert is deemed unimportant, the complete analysis process is made available to the human team so that they can see what investigation was performed and why this conclusion was drawn.
Darktrace cyber ai analyst workflow, how it works

To illustrate this via example, if a laptop is beaconing to a rare domain, the Cyber AI Analyst would create hypotheses including whether this could be command and control traffic, data exfiltration, or something else. The AI analyst then collects data, analyzes it, makes decisions, iterates, and ultimately raises a new high-level incident alert describing and detailing its findings for human analysts to review and follow up.

For more information on Darktrace’s Cyber AI Analyst click here!

Unlocking an efficient SOC

To create a mature and proactive SOC, addressing the inefficiencies in the alert investigation process is essential. By extending AI's capabilities beyond detection, SOC teams can streamline and optimize investigative workflows, reducing alert fatigue and enhancing analyst efficiency.

This holistic approach not only improves Mean Time to Analysis (MTTA) but also ensures that SOCs are well-equipped to handle the evolving threat landscape. Embracing AI augmentation and automation in every phase of threat management will pave the way for a more resilient and proactive security posture, ultimately leading to a high-performing SOC that can effectively safeguard organizational assets.

Every relevant alert is investigated

The Cyber AI Analyst is not a generative AI system, or an XDR or SEIM aggregator that simply prompts you on what to do next. It uses a multi-layered combination of many different specialized AI methods to investigate every relevant alert from across your enterprise, native, 3rd party, and manual triggers, operating at machine speed and scale. This also positively affects detection engineering and alert tuning, because it does not suffer from fatigue when presented with low accuracy but potentially valuable alerts.

Retain and improve analyst skills

Transferring most analysis processes to AI systems can risk team skills if they don't maintain or build them and if the AI doesn't explain its process. This can reduce the ability to challenge or build on AI results and cause issues if the AI is unavailable. The Cyber AI Analyst, by revealing its investigation process, data gathering, and decisions, promotes and improves these skills. Its deep understanding of cyber incidents can be used for skill training and incident response practice by simulating incidents for security teams to handle.

Create time for cyber risk reduction

Human cybersecurity professionals excel in areas that require critical thinking, strategic planning, and nuanced decision-making. With alert fatigue minimized and investigations streamlined, your analysts can avoid the tedious data collection and analysis stages and instead focus on critical decision-making tasks such as implementing recovery actions and performing threat hunting.

Stay tuned for part 3/3

Part 3/3 in the Reimagine your SOC series explores the preventative security solutions market and effective risk management strategies.

Coming soon!

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI